Кожух индукционной печи, Схемы индукционных печей

Кожух индукционной печи

Оджаг Печи для пиццы Тандыр Чименея. Если горизонтальный размер полюсов магнитопровода превышает горизонтальный размер ванны тигля, то увеличатся этот размер магнитопровода, расход материала и энергии, поток рассеяния. Индукционные печи.




Для обеспечения надежного питания при эксплуатации и в аварийных случаях приводные двигатели механизмов наклона индукционной печи, вентилятора, привод загрузочно-разгрузочных устройств и системы управления питаются от отдельного трансформатора собственных нужд. Схема индукционной тигельной печи. Промышленные индукционные тигельные печи емкостью более 2 т и мощностью свыше кВт питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты.

Печи выполняют однофазными, и для обеспечений равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи Сс, подключаемых с индуктором по схеме треугольника см.

АРИС на рис. Силовые трансформаторы мощностью , и кВ-А имеют 9 - 23 ступени вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

Кожух индукционной печи

Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью - кВ-А, при потребляемой мощности свыше кВт также устанавливают симметрирующие устройства, но на стороне ВН силового трансформатора. При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах.

Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности Рп и cosфи путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи.

Индукционная плавильная печь для плавки металла RONTAI - РУСЛИТТЕХ

Регуляторы и измерительная аппаратура размещены в шкафах управления. Схема питания индукционной тигельной печи от силового трансформатора с симметрирующим устройством и регуляторами режима печи: ПСН — переключатель ступеней напряжения, С — симметрирующая емкость, L — реактор симметрирующего устройства, С-Ст - компенсирующая конденсаторная батарея, И — индуктор печи, АРИС — регулятор симметрирующего устройства, АРИР — регулятор режима, 1K—NK — контакторы управления емкостью батареи, ТТ1, ТТ2 — трансформаторы тока.

Печи оснащены автоматическими регуляторами электрического режима, системой сигнализации «проедания» тигля для высокотемпературных печей , а также сигнализацией о нарушении охлаждения в водоохлаждаемых элементах установки. Схема питания индукционной тигельной печи от машинного преобразователя средней частоты со структурной схемой автоматического регулирования режима плавки: М — приводной двигатель, Г —генератор средней частоты, 1K—NK — магнитные пускатели, ТИ — трансформатор напряжения, ТТ — трансформатор тока, ИП — индукционная печь, С — конденсаторы, ДФ — датчик фазы, ПУ — переключающее устройство, УФР — усилитель-фазорегулятор, 1КЛ, 2КЛ — линейные контакторы, БС — блок сравнения, БЗ — блок защиты, ОВ — обмотка возбуждения, РН — регулятор напряжения.

Схема индукционной закалочной установки. Помимо источника питания М—Г схема включает в себя силовой контактор К, закалочный трансформатор ТрЗ, на вторичную обмотку которого включен индуктор И, компенсирующую конденсаторную батарею Ск, трансформаторы напряжения и тока ТН и 1TT, 2ТТ, измерительные приборы вольтметр V, ваттметр W, фазометр и амперметры тока генератора и тока возбуждения, а также реле максимального тока 1РМ, 2РМ для защиты источника питания от коротких замыканий и перегрузок. Принци работы индукционной тигельной печи основан на трансформаторнам принципе передачи энергии индукцией от первичной цепи ко вторичной.

Поставляемая к первичной цепи электрическая энергия переменного тока превращается в электромагнитную, которая во вторичной цепи переходит снова в электрическую, а затем в тепловую. Эта тепловая энергия эффективно расплавляет большинство известных металлов в индукционных тигельных печах. В конструкции плавильных узлов печей данного типа отсутствуют магнитопроводы, поэтому алюминиевый корпус не защищен от магнитного поля индуктора.

Кожух индукционной печи

Для уменьшения нагрева U-образного магнитопровода 1 индукционными вихревыми токами Фуко он может быть изготовлен из пластин электротехнической трансформаторной стали толщиной 0,,5 мм при промышленной частоте 50 Гц; толщиной 0,,15 мм - при повышенной частоте до Гц. С увеличением частоты толщина пластины уменьшается. Возможно изготовление небольших магнитопроводов для лабораторных печей и из магнитомягких ферритов, особенно при частоте более Гц.

Основание 6 можно выполнять из отдельных элементов для создания под печью пространства, через которое может стечь в аварийную емкость расплав из треснувшего или прогоревшего тигля. Основание 6 способствует также охлаждению U-образного магнитопровода 1. Витки индуктора 4 охватывают горизонтальную часть U-образного магнитопровода 1 между полюсами и расположены преимущественно в вертикальной плоскости в один, два или более слоев.

Тигель 2 с ванной 3 размещен над индуктором 4 между полюсами N и S U-образного магнитопровода 1 с минимально возможным зазором или без него. Горизонтальный размер полюсов N и S магнитопровода 1 не превышает горизонтальный размер ванны 3 тигля 2. Индуктор 4 может быть защищен от внешних воздействий, особенно при утечке расплава из треснувшего тигля, неэлектропроводным кожухом 7 полностью со всех сторон или частично, например только сверху тигля 2.

Кожух индукционной печи

В межполюсном пространстве U-образного магнитопровода 1 индуктор 4 с кожухом 7 занимают его нижнюю часть. Оставшаяся верхняя часть этого пространства является рабочим объемом и предназначена для размещения тигля 2. Кожух 7 может быть одно- или многослойным, например внешний слой из асбоцемента, a внутренние слои из разных пластмасс.

Витки индуктора 4 могут быть выполнены из медной трубки, как у аналогов, с таким же охлаждением проточной водой, или из сплошных медных проводников: гибкого кабеля, провода или шинки. При использовании неизолированных проводников возможна их изоляция после изготовления индуктора 4 путем его пропитки или заливки компаундом, например эпоксидным.

На витках индуктора 4 целесообразно наличие электроизоляционного слоя, особенно при охлаждении путем подачи жидкого или газообразного хладагента в полость герметичного кожуха 7. Наличие магнитопровода 1 позволяет снизить напряжение питания индуктора 4 и, как следствие, опасность пробоя изоляции. Хладагентами могут быть эмульсии, трансформаторное масло, негорючие силиконовые жидкости, дистиллированная или водопроводная вода, жидкий азот, углекислота, охлажденный сжатый воздух.

Подача хладагента, в том числе водопроводной воды, в кожух 7 непосредственно на внешнюю поверхность электроизолированных витков индуктора 4, а не внутрь их, уменьшает его расход, давление подачи и требования по его подготовке, а также способствует охлаждению магнитопровода 1.

Печь может быть дополнительно оснащена источником подачи хладагента не показан. Тигель 2 с ванной 3 размещен над индуктором 4 между полюсами N и S U-образного магнитопровода 1. Тигель 2 и ванна 3 могут быть выполнены цилиндрической формы, то есть иметь в плане конфигурацию круга, или в виде параллелепипеда, то есть иметь в плане конфигурацию квадрата или прямоугольника.

Форма тигля 2 и ванны 3 особенно в виде прямоугольника по сравнению с цилиндрической формой повышает полезное использование магнитного потока, создаваемого индуктором 4, и целесообразна для печей повышенной вместимости.

Горизонтальный размер ванны 3 вдоль полюса целесообразно выполнять не менее соответствующего размера полюса. Высота ванны целесообразна также не менее верхнего уровня магнитопровода 1. При этом ванна 3 занимает практически весь рабочий объем межполюсного пространства U-образного магнитопровода 1, за исключением толщин ее днища и двух боковых стенок, обращенных к полюсам, и пронизывается рабочим магнитным потоком.

Соотношение между высотой, длиной и шириной ванны 3 тигля 2 определяется удобством загрузки шихты и слива расплава, а также минимизацией расхода энергии на расплавление шихты.

Футеровка ванны 3 может быть выполнена наборной из огнеупорных изделий, в частности кирпича, или набивной из сыпучих огнеупорных материалов. Ее толщина зависит от температуры расплава.

Так, для алюминиевых сплавов толщина футеровки составляет более 75 мм, а для стали является равной или более мм. Тигель 2 может быть установлен на опоры 8, укрепленные на полюсах магнитопровода 1, или на выступы не показаны магнитопровода 1.

🔥 Индукционная ПЛАВКА МЕТАЛЛОВ за ДЕШЕВО. На что способен нагреватель с AliExpress @ognennoetv

Опоры 8 и выступы могут предохранить кожух 7 и индуктор 4 от расплава, вытекшего через трещины боковых стенок тигля 2. При этом тигель 2 может быть не съемным, так как скреплен с магнитопроводом 1, в том числе путем выполнения набивной футеровки стенок тигля 2, исключающей зазор между ней и полюсом. При этом устройство 5 для слива расплава поворачивает всю печь. Тигель 2 может быть подвешен на петлях или цапфах 9, расположенных на противоположных сторонах тигля и опирающихся на верхние торцы магнитопровода 1 непосредственно или с помощью промежуточных деталей, например прокладок, консолей не показаны.

Причем тигель 2 в данном случае не скреплен с магнитопроводом 1, имеет относительно него и кожуха 7 минимально возможные зазоры, что позволяет поворачивать только тигель 2 устройством 5 для слива расплава или извлекать тигель 2 из рабочего объема магнитопровода 1 другим устройством, например подъемником не показан. Для минимизации зазора между тиглем 2 и индуктором 4 с кожухом 7 и обеспечения поворота в случае центрального в плоскости симметрии расположения цапф 9 днище тигля 2 и ванны 3 могут быть выполнены криволинейными.

Цапфы 9 могут быть расположены и у свободных боковых стенок прямоугольного тигля 2 и использованы для поворота тигля 2 или извлечения его из рабочего объема магнитопровода 1 и переноса к разливочному стенду или машине не показаны. Поворот только тигля 2 обеспечивается гораздо меньшими затратами энергии, чем всей печи. Для поворота тигля 2 при сливе и подвешивании его цапфы 9 предпочтительнее петель. Съемный, в том числе переносной, тигель 2 наиболее удобен цельнометаллический из тугоплавкого электропроводного материала, например стали, титана.

Для укрепления съемного футерованного тигля 2 вблизи его внешней поверхности в футеровке размещен металлический решетчатый каркас, скрепленный по меньшей мере с двумя цапфами 9. Каркас может быть выполнен из сетки в виде корзины, перфорированного листа, толстой проволоки, прутка, трубок, узких пластин.

Индукционные плавильные печи ёмкостью 1 тонна с транзисторными преобразователями ПЕТРА

Дискретные металлические элементы решетчатого каркаса желательно выполнять минимально возможной толщины или диаметра из малоэлектропроводных сплавов и располагать с максимально возможным расстоянием друг от друга. При этом они мало нагреваются и «пропускают» большую часть магнитного потока к кускам шихты. Устройство 5 для слива расплава может быть выбрано из наиболее подходящих для принятых габаритов и массы всей печи известных конструкций.

Наиболее удобна для этого электроталь грузоподъемностью до 10 т с гибкой подвеской монорельса, позволяющей отвести электроталь на мм от номинальной оси подвески и обслуживать площадь шириной до мм. Предложенная электромагнитная индукционная тигельная плавильная печь с U-образным магнитопроводом и горизонтальным магнитным потоком работает следующим образом.

После загрузки электропроводных компонентов шихты в ванну 3 до верхнего уровня тигля 2 индуктор 4 подключается к источникам подачи хладагента и регулируемого переменного электрического напряжения с батареей конденсаторов не показаны. При этом магнитопроводом 1 и индуктором 4 образован своеобразный электромагнит, в связи с чем печь является электромагнитной.

Кожух индукционной печи

Число витков индуктора, величину и частоту напряжения и тока определяют расчетом. При прохождении электрического тока по индуктору 4 создается электромагнитное поле, намагничивающее U-образный магнитопровод 1. Он увеличивает значение индукции этого поля до и более раз и направляет в межполюсное рабочее пространство U-образного магнитопровода 1 в виде горизонтального магнитного потока. Степень увеличения значения индукции зависит в основном от магнитной проницаемости материала магнитопровода 1, величины индукции поля, создаваемого индуктором 4, его частоты и расстояния между полюсами.

При увеличении проницаемости и индукции она повышается, а с увеличением частоты и расстояния между полюсами - понижается. Поэтому целесообразна прямоугольная форма тигля 2, уменьшающая это расстояние, когда большие стороны тигля 2 обращены к полюсам. Границы рабочего магнитного потока определяются высотой и шириной полюсов.

За их пределами распространяется магнитный поток рассеяния, в основном между торцами магнитопровода 1.

Кожух индукционной печи

Для его полезного использования и значительного уменьшения распространения за пределами магнитопровода 1 целесообразно равенство или некоторое превышение соответствующих размеров ванны 3 над указанными размерами полюса.